Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lai-Jin Tian,* Feng-Yang Yu, Yu-Xi Sun and Bo Zhang

Department of Chemistry, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.104$
Data-to-parameter ratio $=19.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(3,5-Dinitrobenzoato)tris(2-methyl-2-phenylpropyl)tin(IV)

The Sn atom of the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\right]$, is four-coordinate and possesses a distorted tetrahedral geometry.

Received 27 June 2005
Accepted 5 July 2005
Online 13 July 2005

Comment

Tris(2-methyl-2-phenylpropyl)tin carboxylates, $\left[\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3} \mathrm{Sn}\right.$ $\left(\mathrm{O}_{2} \mathrm{CR}\right)$], generally possess tetrahedral structures and do not assemble into chain structures via carboxylate bridging, due to the crowding of the three bulky groups at the Sn atom (Bao et al., 1998; Bomfim et al., 2002; Tian, Sun, Yang \& Ng, 2005; Tian, Sun, Yang \& Yang, 2005). In the title compound, (I), tetrahedral coordination is also observed (Fig. 1).

(I)

The $\mathrm{Sn} 1 \cdots \mathrm{O} 2$ separation of 3.130 (1) \AA indicates there is a weak interaction between these atoms, which distorts the tetrahedral geometry. The monodentate mode of coordination of the carboxylate is also reflected in the disparate $\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{O} 2-\mathrm{C} 1$ bond lengths of 1.293 (4) and 1.214 (4) \AA, respectively. Bond dimensions around the Sn atom (Table 1) are similar to those found in other reported tris(2-methyl-2phenylpropyl)tin carboxylates, such as tris(2-methyl-2phenylpropyl)tin phenoxyacetate (Bao et al., 1998), acetate (Bomfim et al., 2002), 3-pyridinecarboxylate (Tian, Sun, Yang \& Yang, 2005) and bis[tris(2-methyl-2-phenylpropyl)tin(IV)] phthalate (Tian, Sun, Yang \& Ng, 2005).

Experimental

Bis[tris(2-phenyl-2-methylpropyl)tin] oxide ($1.05 \mathrm{~g}, 1 \mathrm{mmol}$) and 3,5dinitrobenzoic acid ($0.42 \mathrm{~g}, 2 \mathrm{mmol}$) in benzene (50 ml) were refluxed for 6 h with azeotropic removal of water via a Dean-Stark trap. The resulting clear solution was evaporated under reduced pressure. The white solid obtained, (I), was recrystallized from ethanol and crystals of (I) were obtained from hexane by slow evaporation at room

metal-organic papers

temperature (yield 82%, m.p. $402-403 \mathrm{~K}$). Analysis, found: C 61.04, H 5.69, N 3.87%; calculated for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Sn}: \mathrm{C} 60.92$, H 5.80, N 3.84%. Spectroscopic analysis: IR (KBr disc): $v_{\mathrm{as}}\left(\mathrm{CO}_{2}\right) 1663$, $\nu_{s}\left(\mathrm{CO}_{2}\right) \quad 1338, \quad \nu_{\mathrm{as}}\left(\mathrm{NO}_{2}\right) \quad 1543, \quad \nu_{\mathrm{s}}\left(\mathrm{NO}_{2}\right) \quad 1381 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \quad \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): $9.49(3 \mathrm{H}, s$, nitrobenzene-H), 7.30-7.09 $\left(15 \mathrm{H}, m, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 1.35\left(6 \mathrm{H}, s, 3 \mathrm{CH}_{2} \mathrm{Sn}\right), 1.26\left(18 \mathrm{H}, s, 6 \mathrm{CH}_{3}\right)$.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\right]$
$D_{x}=1.371 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=729.42$
Monoclinic, $P 2_{1} / n$
$a=9.9262(8) \AA$
$b=22.5490$ (19) \AA
$c=15.8900$ (13) A
$\beta=96.430$ (1) ${ }^{\circ}$
$V=3534.2(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 5905 reflections
$\theta=2.2-27.0^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, pale yellow
$0.30 \times 0.13 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.802, T_{\text {max }}=0.913$
30178 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.104$
$S=1.19$
8041 reflections
421 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0387 P)^{2}\right. \\
& +2.377 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.92 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.73 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.73 \mathrm{e}^{-3}
\end{aligned}
$$

8041 independent reflections
7322 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-29 \rightarrow 29$
$l=-19 \rightarrow 20$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Sn1-O1	$2.080(2)$	$\mathrm{Sn} 1-\mathrm{C} 28$	$2.147(3)$
$\mathrm{Sn} 1-\mathrm{C} 18$	$2.144(3)$	$\mathrm{Sn} 1-\mathrm{C} 8$	$2.149(3)$
O1-Sn1-C18	$101.94(13)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 8$	$104.51(11)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 28$	$91.68(12)$	$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{C} 8$	$117.18(12)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{C} 28$	$117.18(14)$	$\mathrm{C} 28-\mathrm{Sn} 1-\mathrm{C} 8$	$117.76(13)$

H atoms were placed in calculated positions and included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms, and $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene H atoms.

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

References

Bao, M., He, Q.-L., Liu, B.-D., Xing, Y. \& Liu, Y.-H. (1998). Chin. J. Inorg. Chem. 14, 114-117.
Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, J. L. \& Wardell, S. M. S. V. (2002). Polyhedron, 21, 1667-1676.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tian, L.-J., Sun, Y.-X., Yang, M. \& Ng, S. W. (2005). Acta Cryst. E61, m74-m75.
Tian, L.-J., Sun, Y.-X., Yang, M. \& Yang, G.-M. (2005). Acta Cryst. E61, m1346-m1347.

